Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
2.
Nat Cell Biol ; 24(4): 579-589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414020

RESUMO

Intercellular communication orchestrates a multitude of physiologic and pathologic conditions. Algorithms to infer cell-cell communication and predict downstream signalling and regulatory networks are needed to illuminate mechanisms of stem cell differentiation and tissue development. Here, to fill this gap, we developed and applied CellComm to investigate how the aorta-gonad-mesonephros microenvironment dictates haematopoietic stem and progenitor cell emergence. We identified key microenvironmental signals and transcriptional networks that regulate haematopoietic development, including Stat3, Nr0b2, Ybx1 and App, and confirmed their roles using zebrafish, mouse and human models. Notably, CellComm revealed extensive crosstalk among signalling pathways and convergence on common transcriptional regulators, indicating a resilient developmental programme that ensures dynamic adaptation to changes in the embryonic environment. Our work provides an algorithm and data resource for the scientific community.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Diferenciação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Camundongos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...